Paradoja del Cumpleaños

29/08/2008 10:58

Probablemente muchos de vosotros conoceréis la llamada paradoja del cumpleaños, pero para quienes no la conozcan la voy a explicar:

Introducción: enunciado de la paradoja

Imaginad que en un cierto momento estáis con un grupo de personas, por ejemplo en una reunión familiar o en un bar, cualquier grupo aleatorio de personas valdría. Digamos que hay 25 personas. Os planteo la siguiente cuestión: ¿cuál creéis que es la probabilidad de que en ese grupo de personas haya dos personas que cumplen los años el mismo día del mismo mes?? Quien no conozca este asunto probablemente responda algo como: No sé, pero seguro que muy pequeña. Al menos esa es básicamente la respuesta que yo me he encontrado siempre que he comentado el tema.

Pues la cosa es que ni mucho menos es pequeña. Vamos con lo que podríamos considerar el enunciado de la paradoja:

En una reunión de 23 personas escogidas aleatoriamente, la probabilidad de que dos de ellas cumplan los años el mismo día del mismo mes es de 0,507, es decir, hay un 50,7% de posibilidades de que haya dos personas que cumplan los años el mismo día del mismo mes.

Para las 25 personas de mi ejemplo la probabilidad es aproximadamente de 0,57, es decir, casi el 57%.

Básicamente lo que nos dice este resultado es que en una reunión de 23 o más personas es más sorprendente que no haya dos que coincidan en cumpleaños que el hecho de que sí las haya, algo que todo el mundo tiende a no creer en un primer momento.

Para ver la demostración matemática, aquí.

Este artículo lo he sacado de Gaussianos

 

Volver